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Abstract

This thesis explores a new research direc-
tion of enhancing the consistency of depth
maps in 3D reconstructions, by using ma-
chine learning technologies. High-quality
3D reconstructions require advanced cor-
rection techniques to address inaccuracies
of depth maps captured by low-cost de-
vices. The common approach is to sta-
tistically select the most probable sur-
face by averaging measured values, e.g.,
Signed Distance Function (SDF), and not
assume dependence on depth maps acqui-
sition method, e.g., by LIDAR or Multi-
View Stereo (MVS). This work introduces
two neural network-based approaches, the
pixel-wise and convolutional neural net-
work to refine depth map quality. The
pixel-wise approach processes depth maps
on a per-pixel basis, optimizing depth val-
ues across multiple views to enhance con-
sistency. Meanwhile, the convolutional
approach utilizes a convolutional neural
network to ensure depth accuracy and
consistency from different viewpoints, ef-
fectively merging depth data from LiDAR
and Multi-View Stereo systems. Exper-
imental results demonstrate that these
methods improve the consistency of depth
maps.
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Neural network, Machine Learning,
Computer vision, Lidar, Multi view
stereo, 3D reconstruction, RGB-D
scanning
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Abstrakt

Tato diplomova prace zkouma novy vy-
zkumny smér zvysovani konzistence hloub-
kovych map ve 3D rekonstrukcich pomoci
technologii strojového uceni. Vysoce kva-
litni 3D rekonstrukce vyzaduji pokrocilé
korekéni techniky k reseni nepfesnosti
hloubkovych map zaznamenanych nizko-
nékladovymi zarizenimi. BéZnym pristu-
pem je statisticky vybrat nejpravdépodob-
néjsi povrch pramérovanim namérenych
hodnot, napf. pomoci Signed Distance
Function (SDF), a nepredpoklddat z&-
vislost na metodé ziskavani hloubkovych
map, napi. pomoci LIDAR nebo Multi-
View Stereo (MVS). Tato prace predsta-
vuje dva pristupy zaloZzené na neurono-
vych sitich, pixelovy a konvoluéni, pro
zlepseni kvality hloubkovych map. Pixe-
lovy pristup zpracovava hloubkové mapy
na bazi jednotlivych pixell, optimalizuje
hloubkové hodnoty napti¢ vice pohledy a
zvysuje tak konzistenci. Mezitim konvo-
luéni pristup vyuziva konvoluéni neurono-
vou sit k zajisténi presnosti a konzistence
hloubky z rtznych pohledi, efektivné slu-
Cuje hloubkova data z LIDAR a Multi-
View Stereo systému. Experimentalni vy-
sledky ukazuji, ze tyto metody zlepsuji
konzistenci hloubkovych map.

Klicova slova: Vylepseni hloubkové
mapy, Neuronova sit, Strojové uceni,
Pocitacové vidéni, Lidar, Multi view
stereo, 3D rekonstrukce, RGB-D

skenovani

Preklad nazvu: Evaluace a zlepseni
konzistence hloubkovych map
nahravanych pomoci iPad Pro
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Chapter 1

Notation

In this document, specific notational conventions are employed to represent
mathematical and conceptual entities crucial for clarity and precision in
discussing algorithms and theories. Vectors and matrices are denoted by
small bold letters, e.g., v for vectors, and capital letters, e.g., M for matrices,
with special matrices such as the calibration matrix K, projection matrix P,
rotation matrix R, translation vector t, and the identity matrix I. Points
in 2D and 3D space are represented as x and X (we denote 3D points the
same like matrices) respectively, with their homogeneous coordinates given by
x and X. Elements within vectors and matrices are accessed by subscripts,
such as v;j for the j-th element of a vector and Pjj for the (i, j) element of a
matrix. A special 4x4 transformation matrix E combines a rotation matrix
R and a translation vector t in a specific format that includes the identity
for transformation operations.

Abbreviations such as SfM (Structure from Motion), MVS (Multi-View
Stereo), RGB-D (Red, Green, Blue - Depth), GT (Ground Truth), NN (Neural
Network), SGD (Stochastic Gradient Descent), and MSE (Mean Squared
Error) are used to succinctly convey concepts related to image processing
and machine learning.
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1. Notation

SRR MK ST g RZ <

o

=

StM
MVS
RGB-D
GT

NN
CNN
SGD
MSE
MAE
GPU

Vector

Matrix

Calibration matrix

Projection matrix

Rotation matrix

Translation vector

Identity matrix

2D point

3D point

Homogeneous coordinates of a 2D point
Homogeneous coordinates of a 3D point
j-th element of vector v

element i,j of matrix P

R t

0; 1

4x4 matrix in form E =

Structure from Motion
Multi-View Stereo

Red, Green, Blue - Depth
Ground Truth

Neural Network
Convolutional Neural Network
Stochastic gradient descent
Mean Squared Error

Mean Absolute Error
Graphics processing unit
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Chapter 2

Introduction

The field of 3D reconstruction has been significantly impacted by the advent of
RGB-D scanning technologies, such as those available on devices like the iPad
Pro 2023. Despite technological advances, challenges such as inconsistencies
and inacuracies in 3D reconstructions persist. High-quality 3D models are
typically reliant on expensive scanning equipment, limiting accessibility. This
master thesis seeks to address the challenge of achieving high-quality 3D
reconstructions with scanners that are broadly accessible to the public. We
aim to explore and propose methods to correct inaccuracies in scanned 3D
data, thereby enhancing the consistency and quality of the models.

B 21 Scope

This thesis primarily focuses on the development and refinement of algorithms
for 3D reconstruction to address and resolve the inconsistencies and inaccura-
cies observed in depth maps an point clouds. We aim to critically analyze
reconstructions obtained from RGB-D images, identify potential issues, and
suggest improvements to enhance the 3D reconstruction quality. Our efforts
concentrate on improving the depth maps obtained from the LiDAR scan-
ner of the iPad Pro 2023 and those generated using the Multi-View Stereo
(MVS) algorithm. Figures [2.1] and 2.2/ show examples of 3D reconstructions
errors made using both approaches. In 2.1 we can see artifacts in the 3D
reconstruction, specifically deformation of windows. On the other hand, in
2.2/ we can see holes in the 3D reconstruction either caused by lack of texture
in given areas or insufficient number of images used.

3 ctuthesis t1606152353



2. Introduction

Figure 2.1: Example 3D reconstruction from Polycam app [44] created using
RGB-D scanner on apple device, highlighting artifacts in the model.

Figure 2.2: Example 3D reconstructions using PatchMatchNet [60] (MVS) on
ETH3D benchmark [49], highlighting artifacts in the model.

ctuthesis t1606152353 4



2.2. Objectives

B 2o Objectives

The primary objective of this research is to enhance the quality of depth maps
obtained during the scanning process. The objective was formed because the
EU H2020 ARtwin project running in Czech Institute of Cybernetics and
informatics (CIIRC) required precise scanning using low cost devices like iPad
PRO. While current standard 3D reconstruction pipelines yield satisfactory
results, there remains room for improvement, particularly in the finer details
and error minimization. Our focus has been on identifying and rectifying
these areas to elevate the overall quality of the generated 3D models.

To achieve this, we investigated methods for optimizing scanned depth
data through the application of neural networks. This approach leverages
the capabilities of machine learning to substantially improve both the quality
and consistency of depth maps, representing a significant advancement in
the fields of spatial analysis and computer vision. We propose a method
that would use two approaches that each showed promising results either in
outdoor (MVS) or indoor (LiDAR) environments and combine them together
via machine learning.

Despite utilizing modern technology known for its relatively high precision,
inaccuracies in the scans persist, leading to a lack of reliable ground truth
(GT) data. The only way to obtain GT data would be using expensive scanner
devices, that were unfortunately not available to us. This presents a major
challenge, as enhancing the data without a clear GT benchmark complicates
the process. Neural networks typically require well-labeled reference data
to train effectively. Two pivotal questions we address in this study is how
to generate such reference data when the precision of our scanned inputs
remains suboptimal, and how to avoid using GT data and use the imprecise
data for our advantage.

. 2.3 Limitations

Despite our objectives to advance affordable 3D scanning technology, the
project acknowledges several inherent limitations. A significant constraint
is the computational demand of our methods, which predominantly rely on
GPU processing and are not feasible with CPU-only setups. Additionally,
our experimental dataset, which simulates a construction site environment,
may not be representative of larger or outdoor scenes, potentially limiting the
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2. Introduction

generalizability of our findings. Nextly, the precision of the scanning devices
used, including the iPad Pro 2023, is not flawless, and some measurement
errors are still observable. Lastly, the biggest limitation of our work is the lack
of ground truth data, because our scanned data are imprecise, and require
fine tuning. These limitations define the boundaries of our project and frame
the context in which our findings should be interpreted.

. 2.4 Contributions

This project extends beyond the basic goal of refining dense point clouds.
Utilizing the iPad Pro, a device prevalent in the consumer market, this study
investigates how mainstream RGB-D scanners can be enhanced for routine
use, potentially democratizing advanced 3D reconstruction technologies.

Despite the limited scope of our data set, we observed enhanced consis-
tency in the reconstructed models, even with inputs that were novel to the
neural network. This suggests robustness in our approach, indicative of its
applicability to a broader range of real-world scenarios.

Additionally, this thesis identifies several options for further refinement of
our techniques. These suggestions not only underscore the potential for incre-
mental advances within our framework but also highlight opportunities for
future investigations and applications into 3D reconstruction methodologies.

ctuthesis t1606152353 6



Chapter 3

Related Work

In the rapidly evolving field of computer vision and 3D reconstruction , the
development and refinement of data capture and processing technologies
have been essential in pushing the boundaries of what is achievable. Among
these advancements, Structure from Motion (SfM), Multi-View Stereo (MVS),
RGB-D scanning technologies, and depth map fusion are some of the main
concepts we will discuss in this section. This chapter provides an overview of
the main approaches in these areas, outlining their foundational principles
and their contributions to both academic research and practical applications.

The following concepts that are discussed, are described in depth in Hart-
ley’s Multiple view geometry in computer vision book [20] or in [61], 12} 63].

B 3.1 Structure from Motion (Sfm)

Structure from motion (SfM) is a method employed to generate 3D models
from 2D RGB images [20]. This process is divided into several key phases:
extracting features, matching these features between images, mapping into
3D and optimizing the resulting matches through bundle adjustment. These
steps form a process that results in a sparse point cloud (providing us
with intrinsics and extrinsics parameters for each camera). The subsequent
section will delve into each of these stages in more depth, outlining their
contributions to the construction of the sparse model. For our implementation
of SfM, we utilized COLMAP [47, [48], a software that facilitates each of these
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3. Related Work

operations, to assemble our sparse 3D model. For MVS implementation we
used PatchmatchNet [60].

B 3.1.1 Feature Extraction

Feature extraction in the context of Structure from Motion (SfM) is an initial
step where distinctive patches within images are identified and characterized.
This process involves describing these patches by the coordinates of their
centers and encoding their unique information into distinctive feature vectors.
The objective here is to distill the images into a manageable set of features,
effectively reducing data redundancy and enhancing computational efficiency.
These features, or feature vectors, are crucial as they represent specific
image patches and are designed or trained to be invariant to scale changes,
rotations, and translations. This invariance ensures that the features remain
recognizable across different images despite variations in size, orientation, or
position.

A cornerstone in the field of feature extraction is the SIFT (Scale-Invariant
Feature Transform) algorithm [26], which is valued for its robustness in de-
tecting and describing image features. SIF'T’s ability to maintain consistency
in feature identification across diverse conditions makes it a perfect tool to
meet the requirements of SfM, where images captured from various angles
and distances are synthesized into a cohesive 3D structure.

The paper "Image Matching across Wide Baselines: From Paper to Practice'
published by Dmitro Mishkin [2I], contains extensive comparison of feature
detectors and matches.

The features can be categorized into three families. Firstly, the full "classi-
cal" pipelines (handcrafted methods) [27, B} 6] 46, 2] [T} 24} 58|, [7, 32} 30} 5 [34],
secondly the descriptors learned on DoG keypoints [51], B3], 29, 2] 28| [15],
and lastly we also have pipelines that are learned end to end [13| 38|, 14} [45].

The table below (figure |3.1) shows the number of feature detected (NF),
number of inliers produced by RANSAC [16] (NI) and mean average accuracy
(mAA) of each of the approaches. The three highlighted numbers show the
three best detector strategies.

ctuthesis t1606152353 8



3.1. Structure from Motion (SfM)

PyRANSAC DEGENSAC MAGSAC
Method NF NIT mAA(10°)T NIT mAA(10°)T NIT mAA(10°)T Rank
CV-SIFT 7861.1 167.6 .3996 243.6 4584 2974 4583 14
VL-SIFT 7880.6 179.7 3999 261.6 4655 326.2 4633 13

VL-Hessian-SIFT 8000.0 204.4 3695 290.2 4450 348.9 4335 15
VL-DoGAff-SIFT 7892.1 171.6 3984 250.1 4680 317.1 4666 11
VL-HesAffNet-SIFT  8000.0 209.3 3933 299.0 4679 350.0 4626 12

CV-/SIFT 7860.8 1923 4228 2817 4930 3475 4941 10
CV-SURF 77300 107.9 2280  113.6 2593 1453 2552 19
CV-AKAZE 7857.1 1314 2570 2468 3074 3018  .3036 17
CV-ORB 71502 1237 .1220 1500 .1674 1789  .1570 22
CV-FREAK 8000.0 1233 2273 1310 2711 1967  .2656 18
L2-Net 7861.1 213.8 4621 3660  .5295  481.0  .5252 5
DoG-HardNet 7861.1 286.5 4801 4323 5543 575.1 5502 2
DoG-HardNetAmos+ 7861.0 265.7 4607  398.6  .5385 5287  .5329 3
Key.Net-HardNet ~ 7997.6 448.1 3997 5983  .4986 8154  .4739 9
Key.Net-SOSNet 7997.6 275.5 4236 5874 5019 7664 4780 8
GeoDesc 7861.1 2054 4328 3485  S111 4534 5056 7
ContextDesc 78590.0 278.2 4684 4936 5098 5441 5143 6
DoG-SOSNet 7861.1 281.6 4784 4246 5587 5633  .5517 1
LogPolarDesc 7861.1 2544 4574 4418 5340 5912 5238 4
D2-Net (SS) 56653 280.8  .1933 4823 2228 7813 2032 21
D2-Net (MS) 6924.1 2782 2160 470.6 2506 7412 2321 20

R2D2 (wasf-n8-big) 7940.5 457.6 3683 842.2 4437 998.9 4236 16

Figure 3.1: Comparison of stereo results of different detector strategies with 8k
features [21].

In the presented stereo task, deep descriptors extracted from DoG keypoints
achieved top performance in terms of mean Average Accuracy (mAA). The
handcrafted descriptor SIFT (specifically RootSIFT) also remained competi-
tive, ranking 10 on the stereo task and within 13.1% of the top-performing
method. However, other classical feature descriptors did not fare as well,
with inconsistent performance between validation and test sets. R2D2, an
end-to-end method, produced a much larger number of "inliers" (both correct
and incorrect) than most other methods, suggesting that its incompatibility
with the ratio test could pose challenges when combined with sample-based
robust estimators.
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3. Related Work

The following visualization (figure shows the reconstructed point
cloud using COLMAP while utilizing three different local features: SIFT,
SuperPoint and R2D2. The reconstructions using SIF'T and R2D2 are dense,
though they differ in some aspects. While the reconstruction with SuperPoint
is fairly less dense, given its ability to extract a limited number of features
effectively and its poses seem less accurate.

(a) SIFT (b) SuperPoint (c) R2D2

Figure 3.2: Results of COLMAP with different local features on scene “Sacre
Coeur” from [21].

B 3.1.2 Feature Matching

Feature matching represents a critical phase in the Structure from Motion
(SfM) workflow, serving as the bridge between isolated features extracted
from individual images and the cohesive 3D reconstruction they will form.
This stage begins with the identification of tentative matches among features
across image pairs. This is accomplished by comparing feature vectors and
selecting pairs that exhibit the smallest distance between them. This distance
is usually described by cosine similarity, thereby establishing a preliminary set
of correspondences among the distinct patches detected in different images.

Once tentative matches are established, their validity is assessed through
the verification of geometric constraints derived from epipolar geometry. This
step ensures that only those matches that satisfy the expected constraints
within a threshold—given the camera’s movement and orientation between
shots—are accepted as true correspondences. These true correspondences
are referred to as inliers. It serves to filter out inconsistent matches that,
although close in feature space, do not adhere to the physical transformation
between multiple viewpoints.

ctuthesis t1606152353 10



3.1. Structure from Motion (SfM)

Some recent feature matching pipelines leverage pre-detected features
using detectors such as [I3, [65, 56]. Examples of such pipelines include
LightGlue [25] and SGMNet [64]. There are also pipelines that operate
without traditional detectors, like LoFTR [50] and ASpanFormer [10]. The
following figure taken from Xu’s paper [62], provides a comparison of
these various feature matching pipelines.

(e) SuperPoint+SGMNet (f) Aspanformer (g) DISK+NN (h) LoFTR

Figure 3.3: Matching results for outdoor images using different matching tech-

niques [62].
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3. Related Work

The primary parameters of each detector are robustness and precision.
Handcrafted methods such as SIFT generally yield fewer keypoints but with
higher precision. On the other hand, trained detectors typically generate a
larger number of features that are more robust, although their precision is
not as high. For a more detailed analysis, refer to the bachelor’s thesis by
Ondrej Kafka [22].

B 3.1.3 Mapping

Mapping in the Structure from Motion (SfM) process is the next step that
transforms the found correspondences of 2D image feature points into a 3D
world coordinate system. The procedure begins with the selection of an initial
pair of cameras, which serve as the reference for the mapping process. Usually,
the coordinate system of the first camera defines the origin and orientation
of the world coordinate system and the baseline length of the initial pair is
scaled to one, i.e., it defines the scale of the world coordinates.

Following this, a new image is registered to the reconstruction based on
found correspondences between the new image and the cameras that are
already registered. The 2D-2D correspondence between already registered
(reference) cameras and the new camera is essential for establishing the
connections between 2D image feature points and their corresponding points
in the 3D space. With these correspondences in hand, the absolute pose of
the newly registered camera can be accurately computed, anchoring it within
the emerging 3D reconstruction.

This mapping cycle of finding 2D to 3D correspondences to calculate the
absolute pose is repeated for each new camera added. It is also necessary to
triangulate the remaining 2D to 2D correspondences in order to obtain 3D
points. Through this iterative process, the SfM method registers 2D images
to construct accurate 3D reconstruction of the scene.

These stitching processes are usually made iteratively using sampling
schemes like RANSAC [I6] relying on solutions for pose solving such as
the 5- [37], 7- [I8] or 8-point algorithm [19]. Optimization can be achieved
using likelihood instead of reprojection for example using MLESAC. MLESAC
adopts the same sampling strategy as RANSAC to generate putative solutions
but chooses the solution to maximize the likelihood rather than just the
number of inliers [53].

ctuthesis t1606152353 12



3.2. Multi View Stereo (MVS)

Incorporating Simultaneous Localization and Mapping (SLAM) into Struc-
ture from Motion (SfM) [36l O] provides several valuable benefits. The
real-time processing and incremental mapping capabilities are vital for ap-
plications that require immediate spatial awareness. SLAM’s loop closure
detection helps minimize drift by recognizing previously visited locations, lead-
ing to more accurate maps. Plus, the map-based optimization simultaneously
refines the 3D map and trajectory for improved localization, ensuring robust
performance even in changing environments. This makes SLAM essential in
enhancing the accuracy and reliability of SfM.

Bl 3.1.4 Bundle Adjustment

The last step of SfM is the bundle adjustment [54]. Bundle adjustment is
a optimization method used to refine the 3D reconstruction created in the
mapping step of the SfM. The mapping algorithm provides initial estimates
of camera positions and the 3D points corresponding to matched features
within the scene. However, these initial estimates may contain inaccuracies
due to various sources of error, such as imprecise feature matching or outliers.

Bundle adjustment adjusts these initial estimates to minimize the overall
re-projection error, which is the discrepancy between the observed feature
positions in the images and the projections of 3D points using estimated
camera poses and intrinsic parameters. This optimization is conducted by
simultaneously refining the camera parameters and the 3D point coordinates.

To achieve this refinement, bundle adjustment employs algorithms such
as Levenberg-Marquardt [35], which iteratively improve the accuracy of the
camera and 3D points.

Through bundle adjustment, the resulting output includes the optimized
positions of cameras and the refined 3D coordinates of features, leading to a
more accurate and coherent sparse model.

B 3.2 Multi View Stereo (MVS)

Following the generation of the sparse model, the subsequent phase in 3D
reconstruction is the Multi-View Stereo (MVS) [48]. While Structure from
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Motion (SfM) produces the initial sparse model along with the camera orien-
tations, MVS further refines the 3D representation by estimating additional
3D points that were not identified during the initial feature extraction process
in SfM.

B 3.2.1 Depth Map Creation

The creation of depth maps begins with a principle similar to the feature
extraction stage in Structure from Motion (SfM), aiming to identify corre-
sponding pixels in images. Modern approaches usually employ patch matching
techniques [4]. These methods involve comparing small sections across the
complete images, assessing their similarity based on photometric consistency
to ensure uniform appearance from different viewpoints.

Followingly images are rectified to align corresponding points along the
same image rows or columns, simplifying the subsequent computation of
disparities. Next is the calculation of disparity, which involves determining
the difference in the horizontal positions of matching points between stereo
images. This disparity is inversely proportional to the scene depth at each
point, allowing closer objects to exhibit greater disparity. These disparities are
then used to construct depth maps, where each disparity value is converted
into a depth measurement based on the stereo setup’s geometry, specifically
the cameras’ baseline and focal lengths.

Subsequently, these 3D points generated from disparity maps undergo
a consistency check from various viewpoints, confirming the accuracy of
the depth estimates across all views. The final depth estimates are then
interpolated and smoothed in each view to eliminate holes and achieve a
realistic appearance.

B 3.2.2 Mesh Construction

The subsequent standard step in 3D reconstruction can be transitioning from
the dense point cloud, obtained in the preceding phase, to constructing a
mesh. This dense point cloud is generated by projecting the estimated depth
values into 3D space from each viewpoint using algorithms like [42], [43], [59]
or [31]. To create the mesh from these 3D points, we employ algorithms such
as the Poisson Surface Reconstruction [23] or Delaunay Triangulation [8].
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3.3. RGB-D Scanning

To enhance the visual fidelity of the model, texturization can be applied.
This process involves mapping the RGB data from the original images onto
the mesh to create textures that accurately mirror the scene’s appearance,
utilizing the camera parameters for precise alignment.

The mesh creation is a standard step during 3D reconstruction, however,
for our project, we focused solely on analyzing the depth maps produced
by MVS, comparing these with depth maps acquired from iOS LiDAR. As
mentioned earlier, the execution of the SfM algorithm was carried out using
COLMAP while MVS was carried out using PatchmatchNet [60].

B 33 RGB-D Scanning

The data acquisition phase of our project was conducted exclusively with an
iPad Pro 2023, chosen for its integrated LIDAR sensor and the customer choice,
i.e., in EU H2020 ARTwin project, the device was specified by companies
managing the construction progress. However, it’s worth noting that any
Apple device equipped with a LiDAR sensor could be employed for similar
data collection purposes, as they are capable of capturing depth information.
The comprehensive procedure for scanning and data collection is detailed
further in 4.2 and [4.1L

By harnessing depth data from both the iPad Pro’s LIDAR sensor and the
Multi-View Stereo (MVS) approach, we succeeded in gathering a diverse set
of depth measurements. This diversity in data sources allowed us to achieve
a greater variance in our dataset, providing a broader scope for data analysis
due to the increased variability of the information collected, while allowing
us to identify the fact that some parts of the 3D representation are more
accurate and reliable from LiDAR and some from MVS.
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Chapter 4

Methodology/Prerequisites

This chapter details the methodology used to capture, analyze, and align
RGB-D data to assess defects of our scanned environment. It outlines the
data collection process, the alignment of different coordinate systems, and
derives the reprojection formula. The chapter also discusses the evaluation
metrics used to identify inconsistencies and gauge the quality of 3D point
clouds.

B a1 Recording Application

This chapter outlines the application we utilized for data collection, pivotal
to this thesis. The application captures RGB-D images, yielding color and
depth data for each pixel. It also integrates GPS and gyroscope technologies
to track the camera’s location and orientation. We selected a construction
site for data collection because the app is specifically tailored for identifying
defects in such environments.

B 4.1.1 Data Collection Setup

Our dataset scanned by our partner Artefacto during the EU H2020 ARtwin
project comprises a total of 193 RGB-D images. The dataset was scanned
at an Eiffage construction site. Each RGB image has a corresponding depth
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image, captured from the identical camera position, with each image boasting
a resolution of 1920 x 1440 pixels.

However, it is important to note that the default scanning resolution of
LiDAR is not 1920x1440 pixels. LiDAR scans are conducted at a much lower
resolution and then upsampled. This upsampling process can introduce some
errors to the accuracy of the depth map.

B 4.1.2 Definition of Coordinate Systems

The sparse model constructed using COLMAP lacks a metric scale; hence, all
distances within the sparse model are geometrically consistent but do have a
different scale. The aim was to employ the camera positions derived from
the app, which provides correct scale but is loaded with drift of the camera
poses, and synchronize them with the refined camera models from COLMAP.
This alignment would ensure that the refined camera centers from COLMAP
correspond to real-world metric system.

B 4.1.3 Alignment of Coordinate Systems

Upon acquiring the 3D positions of the camera centers, we applied the
Procrustes function in Matlab, which facilitates the alignment of point sets.
The Procrustes function calculates the Procrustes transformation, an optimal
shape-preserving Euclidean transformation (including rotation, reflection,
scaling, and translation) between two datasets, X and Y. This transformation
is designed to minimize the sum of squared differences between camera centers
from iPad tracking and the COLMAP reconstruction.

To align the coordinate systems between COLMAP and the iPad, we ac-
counted for the fact that the iPad uses a left-handed coordinate system, while
COLMAP employs a right-handed system. Additionally, in the iPad’s coordi-
nate system, the z-axis is inverted compared to COLMAP. To reconcile these
differences, we flipped the direction of the x-axis in COLMAP’s coordinate
system to match the one of iPad. This adjustment was also applied to the
updated projection matrix to ensure alignment between the two coordinate
system.

Despite the alignment of coordinate systems and subsequent refinement of
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4.1. Recording Application

camera positions, when reprojecting points from depth maps into 3D space
using references and [4.13] the point clouds exhibited an error margin of
approximately +2cm. As an example let’s look at two 3D reconstructions of
manipulators reconstructed using the same pipeline as explained prior (figures

and , showing imprecisions of the point clouds.

Figure 4.1: Example of error on the refined pointcloud 1.
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Figure 4.2: Example of error on the refined pointcloud 2.
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4.2. Real-world Indoor/Outdoor Scanning

B 4.2 Real-world Indoor/Outdoor Scanning

The choice of scanning environment is important in evaluating the performance
and applicability of different depth sensing technologies such as LiDAR and
Multi-View Stereo (MVS). Our project focuses on a construction site, an
environment that uniquely combines aspects of both indoor and outdoor
settings. This mixed setting presents unique challenges and opportunities for
assessing and comparing these technologies.

B 4.2.1 Environment Selection

The construction site was selected as the scanning environment because
it inherently contains both indoor and outdoor elements. This choice was
strategic, aimed at evaluating the technologies under varying conditions.

Outdoor environments often impair the effectiveness of LiDAR technology.
The primary issue with outdoor LiDAR scanning arises from the interference
of natural sunlight with the LiDAR sensors. Sunlight can overpower the laser
beams emitted by LIDAR, making the beams nearly invisible and significantly
reducing the precision of the depth measurements. This phenomenon is
particularly problematic in bright conditions [41].

In contrast, Multi-View Stereo (MVS) does not rely on light emission
from the device but rather on capturing images from multiple viewpoints to
reconstruct a 3D model. MVS can be more adaptable to different lighting
conditions, making it potentially more effective in outdoor environments where
LiDAR struggles. On the other hand, MVS does struggle with texture-less
areas, because of the absence of feature points, also leading to imprecisions
in the 3D reconstruction.

B a3 Geometry of Reprojections

This chapter introduces and derives the reprojection formula extensively used
throughout this thesis. This formula translates image values into a reference
frame of another camera, providing a mathematical foundation for evaluating
the 3D reconstruction.
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B 4.3.1 Used Matrices and Vectors

In this section, we describe the calibration and projection matrices essential
for our reprojection process. The calibration matrix K adjusts the 3D
coordinates according to the camera’s internal characteristics and they are
mapped onto the 2D image plane. This includes scaling by the focal length,
accounting for the optical center, and correcting for skew in the image
sensor. A visualization and in depth explanation of these transformations
can be found in the book Elements of Geometry for Computer Vision and
Computer Graphics [40] written by Tomas Pajdla, more specifically on page
45, figure 7.2. b). For simplicity, our model assumes zero radial distortion.
Radial distortion typically affects real-world lenses, causing straight lines to
appear curved. By neglecting this, we simplify the mathematical model and
focus on transformations, which are computationally less intensive and more
straightforward to manage.

The calibration matrix, often denoted as K, encapsulates the intrinsic
parameters of the camera. These parameters include the focal lengths along
the x and y axes (f; and f,) and the optical center coordinates (¢, and ¢;)
[40]. The matrix is defined as:

Cy

fz 0
K=1|0 f, ¢ (4.1)
0 0 1

This matrix simplifies our approach by assuming the camera exhibits no skew
between the axes.

The projection matrix P is a 3x4 matrix that combines the camera’s
intrinsic parameters with its extrinsic parameters (rotation R and translation
t), representing the camera’s position and orientation in the world:

P=K[R t| (4.2)

In our derivation of reprojection formula, we will define matrix E which
is essentially the Euclidean transformation from world coordinates into the
camera coordinates. It transforms 3D points in their homogeneous coordinates.
E therefore has form:

E = (4.3)
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B 4.3.2 Reprojection Formula

One of the main equations employed in the dataset creation phase was the
reprojection formula, enabling the transfer of pixel values from a reference
image to a source image through spatial transformation. This derivation
outlines the underlying mathematical procedure.

We start with the coordinates of a pixel in the reference camera, denoted
as X € R?. The initial step involves transforming these 2D coordinates into
the camera coordinate system via:

v=K!x (4.4)

Note that both the vectors x and v are in homogeneous coordinates.

To convert from homogeneous coordinates of V and v to non-homogeneous
coordinates V and v we use:

Va
T

V:(;i,é,é) where V = “2’ (4.5)

Vi

T Uz
Vg Uy
— (% %) where v = 4.

v (vw,vw) where v :jy (4.6)

Subsequently, to project the point from 2D into 3D in the camera coordinate
system, we scale this vector by the depth value d of the pixel x:

v =vd (4.7)

Transitioning the point from the camera coordinate system to the world
coordinate system requires multiplication by the inverse of the extrinsic matrix
E_! defined in 4.3

ref
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X =E_{(V) (4.8)

= ref

Having derived the world coordinates X, the reprojection to corresponding
pixel coordinates y in the source image reverses this transformation process,
involving Eg.. and the calibration matrix K:

V = EqE (V) (4.9)
y =KV (4.10)

The coordinates of y indicate the position within the source image that
geometrically corresponds to the value in the reference image. This allows
for the alignment of RGB-D values between images:

d=Dye(x),  d = Duely) (4.11)

where Dyef(x) is the depth value at position x of the depth map of the
reference image and Dg.(y) is the depth value at position y of the depth
map of the source image.

To find the corresponding 3D point representations from both images, the
following formulations are employed:

X = B f (K™'xd) (4.12)

X' = E;l (K 'yd) (4.13)

In an ideal scenario X and X’ should be the same up to the inconsistency
introduces by the parameters E, K, d, x, and y. Therefore, we need to
simplify the mathematical problem by assuming that some values are correctly
determined. Otherwise, we have under constrained problem and the variables
can acquire any values. In the following text, we assume that E and K are
fixed, i.e., not loaded with an error.
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. 4.4 |dentification and Visualization of
Inconsistencies

The next step of the thesis was to evaluate the inconsistencies of our model. We
consider fixed camera intrinsic and extrinsic parameters that were generated
by COLMAP SfM, after their alignment to iPad coordinate system to fix the
scale.

To further evaluate the point cloud quality, we used various metrics that
offer insights into the accuracy and integrity of the 3D reconstructions, as we
assume the lack of ground truth (GT) data, caused by the inaccuracies of
the scans (more details in section |4.4.1). Therefore the metrics used evaluate
the model without GT and they included reprojection error, which measures
the discrepancy between the observed image points and the corresponding
projections of the reconstructed 3D points; photometric consistency, assessing
the similarity in appearance of a point across multiple views; and a direct
comparison with depths obtained from LiDAR scans. Additionally, the
completeness of the point cloud was scrutinized to evaluate the coverage and
density of the reconstructed model.

Upon analysis, it became evident that the most challenging areas in the re-
construction process were those subjected to occlusion. Occlusions, caused by
physical barriers such as walls, corners, and pillars, pose significant challenges
for both depth estimation and point cloud reconstruction. These obstacles
can obstruct the line of sight necessary for accurate depth measurement
and feature matching, leading to gaps in the data or inaccuracies in the
reconstructed model. Thats why we chose a specific image 4.3| for analysis.

Further investigation into these problematic areas revealed several patterns
and insights. For instance, occlusions often resulted in sparse or incomplete
sections within the point cloud (more in section 4.4.1)), highlighting the need
for advanced strategies to predict or infer the missing information based on
the available data. Moreover, the analysis of photometric consistency (more
in section 4.4.1)) in occluded regions underscored the challenges in maintaining
visual coherence across different viewpoints, especially in complex scenes with
varying levels of light and shadow.
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B 4.4.1 Analysis Tools and Techniques

In examining the inconsistencies, a specific image was selected to demonstrate
the various metrics due to its depth complexity from the chosen viewpoint.
This particular image features a corridor, which is prone to occlusions
when observed from slightly different angles. This characteristic made it an
ideal candidate for illustrating the challenges associated with depth measure-
ment and feature matching in complex scenes.

Figure 4.3: Undistorted RGB image chosen for depth consistency analysis
because it is prone to occlusions.
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B Comparison with LiDAR

The initial assessment of the constructed point cloud and camera placements
involved a direct comparison between the depth data derived from Multi-View
Stereo (MVS) and that acquired via LiDAR technology.
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Figure 4.4: Absolute error between LiDAR and MVS depth in meters. Values
of the absolute error higher than one meter were discarded for visualization
purposes.

The graphical representation clearly reveals discrepancies between
the depth maps, with some of the errors reaching significant levels (up
to approximately 3 meters). However, the overall Mean Absolute Error
(MAE) stands at 0.633 meters, indicating the average deviation across the
dataset. It is also necessary to explain, why we previously mentioned errors of
approximately +2cm in 3D points when we see an average error of 63cm. The
reason lies in the filtering of inconsistencies and the preservation of areas with
a high density of points, that is, filtering out points that were not observed
in similar locations repeatedly. This filtering does not occur here.
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B Reprojection Error

To assess the reprojection error, we focused on an image that was reprojected
according to the formula referenced in This particular image was chosen
due to its proximity to the reference image. The figures below display the
reprojection error comparing both the LiDAR-captured depth values
and those estimated by MVS

Reprojection error is important because it measures the difference between
the expected projection of a 3D point onto a 2D image plane and its actual
observed position. This error helps assess the accuracy of 3D models and
camera calibrations. A smaller reprojection error means the model or system
is accurately estimating the spatial relationships between the camera and
the scene, while a larger error can indicate problems in feature matching or
calibration.

(a) : Reference image RGB (b) : Source image RGB

Figure 4.5: Reference and source RGB images.
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(a) : Reprojection error for LiDAR- (b) : Reprojection error for MVS-
captured values in meters. estimated values in meters.

Figure 4.6: Reprojection errors between LiDAR and MVS.

Analyzing the discrepancies from the LiDAR, it is observed that the error
can escalate to as much as 3.5 meters, notably around the corridor area.
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Conversely, the reprojection error for the MVS-derived depth values peaks
at 6 meters, indicating significant inaccuracies in the estimated depth cloud.
This aligns with the statement that MVS has problems accurately estimating
the depth for texture-less areas.

B Photometric Consistency

To analyse the photometric consistency of the reprojections, we measured
Normalized Cross-Correlation (NCC) and Structural Similarity Index (SSIM)
of the reprojections on the selected picture.

NCC is a statistical method for measuring the similarity of signals or
images. NCC is robust to changes in amplitude between the two compared
datasets, making it ideal for comparing images that may have been taken
under different lighting conditions or that have differences in exposure. The
formula for calculating NCC is:

Zaz,y[A(x7y) - A] [B($7y) - B]

VEeylA@y) — A2Y, [B(x,y) - B)2

NCC(A, B) =

(4.14)

where A and B are the images compared, A(z,y) and B(x,y) are the
intensity (depth) values in the images and A and B are the mean values of
the images A and B.

SSIM is a method used to measure the similarity between two images. It
is designed to provide a more comprehensive assessment of image quality
by considering changes in structural information, luminance, and contrast,
rather than focusing solely on pixel-by-pixel differences. The SSIM index
is based on the perception that images are highly structured and that the
human visual system is highly sensitive to structural variations. Here’s the
definition and formula for SSIM:

(2papp +c1)(20ap + c2)

SSIM(A, B) =
(4.B) (1% + p% +c1) (04 + 0%+ c2)

(4.15)

where A and B are the images being compared, 4 and up are the average
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pixel intesity (depth) values in images A and B, 0% and 0% are the variances
of A and B, o4p is a covariance of A and B, and ¢; and ¢ are defined as:

¢ = (kL)? (4.16)

Cy = (kQL)Q (4.17)

where L is the dynamic range of the pixel values and k; = 0.01 and
ko = 0.03 by default.

The SSIM values are:

Method | Average SSIM 1
LiDAR | 0.7022
MVS 0.4105

Table 4.1: Comparison of Average SSIM values for LIDAR and MVS values.

The NCC values are:
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(a) : NCC of reprojection of LiDAR (b) : NCC of reprojection of MVS depth
depth values in meters. values in meters.

Figure 4.7: NCC of reprojections from LiDAR and MVS.

The visualization for LIDAR depth values demonstrates a relatively higher
NCC suggesting a stronger correlation and, hence, a more accurate
depth estimation when compared to the original imaging data. In contrast,
the MVS depth values exhibit lower NCC scores 4.7b], indicating reduced
photometric consistency. This disparity suggests that the reprojected MVS
depth values are less aligned with the original images, possibly due to inherent
limitations in capturing fine details or dealing with occlusions in the MVS
approach.

ctuthesis t1606152353 30



Chapter 5

Depth Map Consistency

This chapter focuses on improving the depth maps gathered during data col-
lection. The main goal is to merge the iPad and MVS depth maps, improving
the consistency across multiple views, ensuring they accurately match the
scene’s reprojections into different viewpoints. Achieving consistent depth
maps is crucial for their reliable use in 3D modeling and other applications.
We will explore two techniques to refine depth data, addressing common issues
such as noise and inaccuracies, to produce depth maps that have smaller
inconsistencies.

. 5.1 Pixel-Wise Approach

To enhance depth map consistency, we start with a pixel-by-pixel neural
network approach. The network takes reprojected depth values as input and
outputs the optimal mean depth value along with the standard deviation
for the sample. The main challenge of this approach is the lack of GT data,
therefore we explored how to compose a dataset for training the depth map
consistency. The main motivation behind this is that MVS sometimes ignores
or fails to reconstruct some parts of surfaces, as we can see in figure [5.1
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Figure 5.1: Example of error of MVS depth maps - we can see that the table in
the lower right corner is not reconstructed perfectly and some artifacts occur.

LiDAR does also impose some problems, specifically with reconstructing
black surfaces like PC monitors, because of the light absorption of the sur-
face. Therefore this pixel-wise approach, should consider these imperfections
produced by both MVS and LiDAR, and allow for higher quality depth maps
by combining the data together.

The following parts explain the creation of the dataset, structure of the
neural network, its training and testing.

B 5.1.1 Dataset

To identify inconsistencies, specifically depth inaccuracies, we first reprojected
each depth value from the reference image into n source images, obtaining the
geometrically corresponding pixel coordinates in each of the source images.
Subsequently, we extracted the corresponding depth values from the source
images. Utilizing these depth values, along with multiple depth measurements
obtained from the iOS LiDAR scanner and Multi-View Stereo (MVS) systems,
we reconstructed the 3D points, using in the world coordinate system
for each source image. This approach allowed for a comprehensive assessment
of depth information consistency by comparing these reconstructed 3D points
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against the 3D point reconstructed from the reference image’s (LiDAR) depth
value, using 4.12.

Points ios
®  Points mvs
@® Cameracenter
Ray
Points projected to ray

Figure 5.2: Ray in the point cloud connecting camera center, aiming at our
chosen pixel. All the original and reprojected depth values from MVS and LiDAR,
are aligned on to the ray, which could be seen better on 5.3l

Figure 5.3: Ray in the point cloud from |5.2|- zoomed in.
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To systematically evaluate the distances and inconsistencies among the
reconstructed 3D points, we projected them onto a ray originating from the
camera center and aimed at the 3D point reconstructed from the reference
image depth value, as visualized in Figures |5.2 and [5.3l This projection
facilitated a more straightforward analysis by aligning the points along a
single dimension.

Using the projections of 3D points onto the ray, we analyzed the mean
and standard deviation of the distances from the camera center, employing
the standard deviation as a criterion to identify outlier—points significantly
deviating from the reference 3D point on the ray. Since we did not know
what can be classified as inlier or outlier in the samples, we assumed that the
clusters of points falling into a experimentally selected threshold of standard
deviation are correct (containing no outliers) and clusters not falling into this
threshold were classified as incorrect (containing outliers). That led us to the
idea to manually craft artificial samples that will follow the same distribution
of data and train a neural network to filter out the outlier values.

The learning dataset was crafted by combining correct samples with in-
correct samples and subsequently subsampling. This strategy ensured the
generation of good enough training data from non-ideal inputs (artificial
samples with outliers) aligned with correct outputs (mean of samples not
containing outliers), laying a solid foundation for our analysis of depth in-
formation consistency across images. To prepare the samples for neural
network processing, we applied a softmax transformation to normalize the
data, ensuring that each input vector sums to one, thereby resembling a
probability distribution.

The MATLAB function that calculates the softmax, creates a normalized
histogram for a list of distances within a specified range from 0 to 25.5 meters
(256 bins), using bins of 0.1 units each. It determines the appropriate bin
for each distance, caps the maximum bin index at 256, and accumulates
counts. After processing all distances, it normalizes these counts by the total
number of distances to form a probability distribution, where each entry
in the resultant counts vector represents the proportion of distances that
fall into each bin. This effectively provides a binned density estimate of the
distance distribution. An example can be seen in [5.5
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The following image [5.4] shows the construction of two dataset input
samples.
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(a) : sample a) (b) : sample b)

Figure 5.4: Data sample creation

1) 'no outlier’ sample

2) sample with outliers

3) outlier sample 2) shifted to match mean and median of 'no outlier’ sample
4) 'no outlier’ sample 1) and shifted outlier sample 3) joined

5) subsampled version of 4) (finalized input before softmax)

Then the finalized input sample is ran through softmax to create the input
for the neural network (figure |5.5)).
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(a) : sample a) (b) : sample b)
Figure 5.5: Softmaxes of samples a) and b) from |5.4

For each input generated the training output is only mean and standard
deviation of the mo outlier’ sample 1) in

While generating the testing data a reference image is chosen, and n depth
maps are reprojected into the reference camera. For each pixel, a ray is
constructed, and the corresponding reprojected 3D values are collected and
stored as distances on the ray.

The final dataset was obtained from 4 random images, creating a total of
50 611 samples.
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5.1.2 Neural Network

The neural network runs pixel by pixel, aiming to predict the optimal mean
depth value and standard deviation from the ray distances, i.e,, we can see
it as a filter of outlier values that were artificially added into the training
samples.

Structure

Our model, implemented using PyTorch’s neural network module (nn.Module),
consists of a simple feed-forward neural network designed for tasks requiring
an output of two values, based on an input vector of size 256. Since this
approach is pixel-wise, we process each pixel independently, therefore for
each image we need to process 1920x1440 pixels. The network architecture is
detailed as follows:

Input Layer: Accepts input vectors of 256 units for each pixel. These
256 units represent the softmax distribution of point distances from
camera center.

First Hidden Layer: Comprises 128 neurons, employing the ReLLU
(Rectified Linear Unit) activation function to introduce non-linearity,
enabling the model to learn data patterns.

Second Hidden Layer: Similar to the first, this layer contains 128
neurons with ReLLU activation, augmenting the model’s ability to capture
intricate relationships in the data.

Output Layer: A fully connected layer with 2 output neurons. This
layer outputs mean and standard deviation for each data sample (pixel).
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/ 1440/

920

Figure 5.6: Structure of pixel-wise neural network.

B Loss Function

To evaluate the performance of our network, we devised a loss function that
incorporates both the discrepancy in the mean and the standard deviation
between the network’s predictions and the ground truth. Specifically, the loss
function calculates the absolute difference in the standard deviation (Astd)
and the mean (Amean) values, combining these two metrics into a single
measure of error. The weight assigned to each component was empirically
determined to ensure that both the variance and the mean discrepancies
contribute equally to the overall loss.

Another option would be using a already known metric called Kullback—Leibler
divergence [11], however while experimentally testing with this loss, we ob-
served a non converging trend during training. Therefore, we chose a more
straightforward loss function in order to compare the data generated from
the NN with the reference.

The variables are defined as follows:

B stdqr and meangr represent the "ground truth' standard deviation and
mean, respectively.

B stdyy and meanyy denote the standard deviation and mean predicted
by the neural network.
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The components of the loss function are calculated as:

Astd = ’SthT — SthN’, (5.1)

Amean = |meangt — MEAnNN|- (5.2)

The overall loss is then defined as:
Loss = Astd + wAmean, (5.3)

where w=0.05 is the weight applied to the mean difference, chosen through
experimental validation.

B Training and Other Parameters

For our model’s optimization, we utilized the Stochastic Gradient Descent
(SGD) technique. SGD differs from traditional gradient descent by updating
parameters iteratively using the gradient of the loss function calculated from
a single sample rather than the entire dataset. This approach significantly
reduces memory usage and computational demand.

Experimentation led us to select a learning rate of 0.01, as it facilitated
the most rapid convergence compared to other tested values, which either
failed to converge or did so more slowly.

Our neural network underwent training over 100 epochs, with a batch size of
50,611 samples. Each epoch shuffled the samples to ensure the model did not
learn any potential sequence patterns in the training data. The accompanying
graph [5.7] illustrates the progression of the loss metric throughout the training
process, showcasing the model’s learning curve.
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Figure 5.7: Loss vs. iteration during training of the pixel-wise NN on training
dataset.

B Validation and Testing

For the evaluation phase, we chose an image entirely outside the training
dataset to test the network’s generalization ability. I processed this image
through our model, computing distances for each pixel to obtain a thorough
overview. As a result, the network provided a unique mean and standard
deviation for the image as a whole. The subsequent images illustrate
the outcomes generated by our neural network, highlighting its capability
to interpret and summarize unseen data. The following images are visual
examples and the analytical evaluation can be found in Section |6}
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Figure 5.9: Standard deviation estimated by the NN on testing dataset.
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B 52 Convolution Approach

In our exploration of depth map consistency, we introduced a second technique
involving a convolutional neural network (CNN). This method entails pro-
cessing a reference image alongside source images that have been repositioned
into the reference camera’s coordinates. The goal is to produce a depth map
that aligns with all the updated depth maps. The following sections explain
the approach in more detail.

B 5.2.1 Dataset

The dataset was crafted using the reprojection formulas [4.9] [4.10 and [4.11]
The key idea of the dataset creation was to create n-tuples of images with
high enough overlap of keypoints. For each set, every image once served as
the reference image, with the remaining images reprojected to its camera
coordinates.

CNN input includes images featuring five distinct layers: the conventional
RGB channels, a depth layer from LiDAR data, and a depth estimation from
MVS. These layers from source images were then aligned to the reference
image. Consequently, for a single image, the input dimensionality scales to
n X b X image width x image height, given n images per batch. Therefore,
the entirety of the batch expands to n X n X 5 X image width X image height

To better illustrate the dataset’s structure, we have included figures that
depict the reprojection process for both RGB and depth values from a
randomly chosen sample within our RGB-D image collection |5.11. The
figures showcase the transformation of RGB values from the source image to
match the reference frame [5.11aj and similarly, the adjustment of depth values
sourced from LiDAR data to align with the reference perspective [5.11Dbl
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o =

(a) : Reference image RGB. (b) : Source image RGB.

Figure 5.10: Reference and source RGB images.

(a) : RGB reprojected from source to (b) : Depth (LiDAR) reprojected from
reference. source to reference.

Figure 5.11: Reprojections from source to reference.

In addition, Figure provides a visualization of the input configuration
when handling a batch size of three:
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BATCH

DATA SAMPLE

Image 2 reprojected to 1
RGB-DD

Image 1 reprojected to 2
RGB-DD

Image 1 reprojected to 3
RGB-DD

5.2. Convolution Approach

Image 3 reprojected to 1
RGB-DD

Image 3 reprojected to 2
RGB-DD

Image 2 reprojected to 3
RGB-DD

Figure 5.12: The figure show the structure of the data that are passed to the
CNN . We show one batch of 3 data samples composed of RGB-DD images.
RGB-DD refers to 5 channels: Red, Green, Blue, Depth MVS and Depth LiDAR.
We reproject all five channels of each image into the other images from the batch.
Batch size of 3 therefore includes 3 original images and 6 reprojection images

B 5.2.2 Neural Network

In this section, we describe the architecture and training process of our
convolutional neural network (CNN) designed to analyze spatial relationships
within images and predict depth with high precision. The CNN processes
data through multiple layers, starting from an input layer that handles diverse
features to several convolutional layers aimed at effective feature extraction.
The detailed structure and visualization of the CNN architecture are presented
below (Figure [5.13).
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B Structure

Our CNN is learning to analyze spatial relationships within images to predict
depth with higher precision than the input. Given its complexity, the network
processes data through multiple layers, starting from an input that encapsu-
lates a diverse set of features to a series of convolutional layers designed for
better feature extraction. The architecture is discussed in the following text
and visualized in Figure [5.13.

® Input Layer: Accepts multi-channel input corresponding to the number
of images times five, incorporating RGB channels, LIDAR depth, and
MVS depth. The input is processed through 3x3 convolutional filters to
capture initial spatial relationships and features.

# Convolutional Layer 1: Employs 32 filters of size 3x3 with padding
of 1 to preserve the spatial dimensions of the input, followed by ReLLU
activation and batch normalization for faster convergence and regular-
ization.

# Convolutional Layer 2: Utilizes 64 filters of size 3x3 with padding of
1, including ReLU activation and batch normalization.

® Convolutional Layer 3: Contains 128 filters of size 3x3 with padding
of 1, including ReLLU activation and batch normalization.

® 1x1 Convolutional Layer: A layer using 128 filters of size 1x1 designed
to integrate features without altering spatial dimensions, including ReLLU
activation and batch normalization..

# Convolutional Layer 4: Increases depth with 256 filters of size 3x3
and padding of 1, including ReLLU activation and batch normalization.

® Convolutional Layer 5: Features 256 filters of a larger size (5x5) with
padding of 2, enabling the capture of wider spatial contexts, including
ReLU activation and batch normalization.

® Output Layer: The final convolutional layer reduces the feature maps
to a single output channel using a 3x3 filter with padding of 1, designed
to output the estimated depth value for each pixel.
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Figure 5.13: Structure of convolutional neural network

B Loss Function

In order to evaluate the performance of our CNN, we designed a custom loss
function to minimize the difference between all possible reprojections. This
involves calculating the mean square error (MSE) not only between each
generated image and its original counterpart but also for reprojections of the
output depth map onto the other images in the batch. The aggregation of
MSEs from each reprojected instance forms our overall loss function.
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The diagram [5.14] shows an example for a batch with 3 images.

QOUTPUT 1
IMAGE 1
RGB-DD

QUTPUT 2
IMAGE 2
RGB-DD

QUTPUT 3

IMAGE 3
RGB-DD

Figure 5.14: CNN loss function diagram. Values L1, ..., L6’ account for repro-
jections between outputs and values L1, ..., L9 values account for reprojections
into the original image, to ensure similarity of the generated image with the
input.

The first data sample produced a depth map (OUTPUT 1) which was then
compared to its original input using mean square error (MSE, denoted as
Ly). Additionally, this output depth map was reprojected into the camera
coordinate systems of the second and third images, with the MSEs of these
reprojections being calculated (Lg, L3). This process was similarly applied to
the depth maps generated for the second and third images by the CNN.

We also needed to ensure reprojection consistency between the outputs.
Therefore, we reprojected the outputs into each other and calculated the MSE
between those reprojections (Lf, i € {1,2,3,4,5,6}).

The total loss function can be then calculated as:

nxn nx(n—1)
Loss =~ Z Li+(1—-7) Z L, (5.4)
i=1 i=1

where n represent the number of images and ~ is a parameter to scale
weights of the losses based on their importance.

The formula for loss function can be therefore generalized as:
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Loss =D Y Lisj) + (1= > Liy), where k#1  (5.5)
i=1j=1 k=11=1
where:
Li; = MSE(Dj, D;_, ;) (5.6)

where D; is the LIDAR depth map of the i-th image, D; is the CNN depth
map of the i-th image and D;_,; is the CNN output depth map from image i
reprojected to camera coordinates of j-th image and MSE is the function for
mean square error and -y is a weight used to find a balance between similarity

of generated depth maps and depth consistency of the outputs. Consequently:

Ly = MSE(Dy, Dy.) (5.7)

k—l

where Dy is the depth map of the I-th image generated by the CNN and
Dy_,; is the CNN output depth map of k-th image reprojected to camera
coordinates of I-th image and MSE is the function for mean square error.

In summary L represents the comparison of CNN outputs with the input
depth map, while L’ represents the comparison of CNN outputs with the
remaining CNN outputs. It is important to notice that the complete loss
function accounts for total of 15 reprojections (that are also weighted by some
coefficient ) for each batch, when the number of images in batch is equal to
3. Therefore the final values of loss function does not directly correspond to
the mean squared error of the reprojections in meters. If the average MSE
per reprojection is be desired as an indicator, it is necessary to rescale the
total loss accordingly by the number of reprojections and their corresponding
weights.

B Training and Other Parameters

The CNN had two training strategies. The first strategy, that can be inter-
preted as a depth map optimization, involved training on a single batch of n
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images, each reprojected to match the others, aiming to derive an optimal
depth map consistent across all reprojections. The second strategy expanded
the scope to multiple batches, encompassing various viewpoints. This ap-
proach intended for the CNN to assimilate information about the entire scene,
rather than focusing solely on consistency from a singular viewpoint.

B Single Batch Training

To speed up the training process, we utilized GPU acceleration, faced with the
limitation of our graphics card’s 11GB memory capacity, which introduced
additional challenges. More specifically the GPU we trained on was NVIDIA
GeForce GTX 1080 Ti. By training on local PC, we made the creation of
virtual environment more simple and we did not need to create docker or
singularity containers or deal with any similar problems. Initially, we aimed
to train with batches of 5 images at the full resolution of 1920x1440, but this
ambition was quickly curtailed by memory constraints, causing CUDA to run
out of memory. Our first adjustment involved reducing the batch size to 3
images, but even then, the memory was insufficient. Consequently, we were
compelled to downsample the images to 640x480 pixels, a reduction to one-
third of their original size, which finally allowed the data to be accommodated
by the GPU.

The training was conducted over 2000 epochs, employing Stochastic Gra-
dient Descent (SGD) with a learning rate of 0.01. Although increasing the
learning rate to 0.1 hastened convergence, it resulted in a notably higher loss
function value. A learning rate of 0.01, on the other hand, struck a balance
between convergence speed and optimal loss function value at the end of the
training. SGD was used for the same reasons as outlined in [5.1.2l The value
of v was set to 0.1 during the whole training in order for the model, to keep
higher emphasis on the reprojection error, than the similarity of the images.

The accompanying graph |5.15| illustrates the progression of the loss metric
throughout the training process, showcasing the model’s learning curve.
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Figure 5.15: Loss vs. iteration during training of the CNN on the training
dataset - single batch.

B Multi Batch Training

For the multi batch training, we trained on 10 batches of 3 images each. We
only trained on this amount of data, since our training process took around
50 hours on the GPU available. Therefore, training on more data would be
possible with bigger GPU memory available. We used equal configurations
as in the single batch training, only increasing the number of epochs to 2500.
The following figure |5.16| shows the learning curve of the CNN.
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Figure 5.16: Loss vs. iteration during training of the CNN on the training
dataset - multi batch.

B Vvalidation and Testing

Following the training phase with a single batch of images, we conducted a
test by processing one image from the batch through the model to verify the
accuracy of the output. Before delving into an analysis and discussion of the
outcomes, we will first showcase the CNN-generated depth maps alongside
the original depth maps acquired through iPad for comparison in Figures

5.17 and [5.18.
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(a) : Depth map captured using LiDAR. (b) : Depth map produced by the CNN
on an image from testing dataset.

Figure 5.17: Comparison of original depth map with the depth map produced
by the CNN - known data.

After training on multiple batches, we tested how the model performs
on unseen data. The following images show the example comparison of the
original depth map and depth map generated by the CNN. More in-depth
evaluation can be found in [6.
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(a) : Depth map captured using LiDAR. (b) : Depth map produced by the CNN
on an image from testing dataset.

Figure 5.18: Comparison of original depth map with the depth map produced
by the CNN - unknown data.

51 ctuthesis t1606152353



ctuthesis t1606152353

52



Chapter 6

Experimental Results

This section of the thesis presents analytical results comprising mostly of
tables and visualizations. Visualisation of the depth maps generated by the

NNs can be found at figures and

B 6.1 Pixel-Wise Approach

In the process of evaluating the effectiveness of our pixel-wise neural network
model for depth map enhancement, we conducted a comparison against the
depth maps obtained from LiDAR measurements. This comparative analysis
aimed to quantify the accuracy of our model-generated depth maps in relation
to the LIDAR data. To achieve this, we employed two principal metrics:
Mean Squared Error (MSE) and Mean Absolute Error (MAE). The following
figure visualises the process of measuring MSE and MAE.

The Mean Squared Error emphasizes the penalization of larger errors,
offering a perspective on the average of the squares of errors. Conversely, the
Mean Absolute Error offers an intuitive measure of the average magnitude of
errors between the predicted and actual values.
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NN Input NN Output

LiDAR depth

Figure 6.1: Visualisation of computation of MAE and MSE from pixel-wise
approach.

Findings from the comparison are summarized in Table [6.1]

Metric Value
MSE [m2] 4| 2.2557
MAE [m] | | 1.1131

Table 6.1: Comparison of Neural Network-Generated Depth Maps against
LiDAR Data.

The findings summarized in Table [6.1] reveal certain limitations in the
model’s ability to replicate depth maps with the same fidelity as those obtained
from LiDAR measurements. The MSE and MAE values, while providing a
measure of the model’s performance, indicate notable discrepancies between
the generated depth maps and the LiDAR data.

We also selected four random samples from the validation dataset and
visualized the performance of the NN (figure [6.2). The green bars depict the
original histogram (or parts of it, since the x axis was limited for viewing
clarity) that was the input for the NN. Red line shows the estimated depth
value and blue line represents the LIiDAR depth value. The red dotted lines
represent the estimated standard deviation of the sample.
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Figure 6.2: Four random samples ran through the NN. Green bars represent
input softmax histogram, blue line represent depth value from LiDAR and red
line represents estimated depth value (the estimated mean in top left figure is
exactly covering the highest peak of the input histogram).

From the figure we can see that sometimes the predictions are statisti-
cally more accurate than the LiDAR depth, however, in some samples the
estimated mean does not correspond to reality and the estimation is wrong.

The next figure visualizes the error between the LiDAR data and the
generated depth maps by thresholding differences. Pixels marked in yellow
indicate locations where the discrepancy is less than 10 centimeters, providing
a clear visual representation of areas where the model achieves an error margin
below this threshold.
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Figure 6.3: Depth Map Error Visualization: Errors Under 10cm are highlighted
by yellow color.

B 6.2 Convolution Approach

To assess the effectiveness of the convolutional approach, we introduced a
metric that calculates the average Mean Square Error (MSE) by reprojecting
each generated depth map into the coordinate system of the other images
within the same batch. The computation of this specific MSE variant is
defined as follows:

71 MSE(Dj, Dj—j)

MSE =
n—1

, forj#i (6.1)

Here, n denotes the total number of images in the batch, D; represents the
reference depth map for reprojection, and D;_.; signifies either the original
depth map or the depth map produced by the CNN, reprojected into the
perspective of camera j.The mechanism of this evaluation metric is visually
demonstrated in figure 6.4l
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IMAGE 1 CNN OUTPUT
DEPTH DEPTH OF IMAGE 1

IMAGE 2
DEPTH

IMAGE 3
DEPTH

Figure 6.4: Evaluation metric of CNN. Mean value of MSE 5 and MSE;3 gives
us the column labeled Original MSE in tables 6.2 and |6.3] while mean of values
MSEcnn2 and MSEcnNs give us the column CNN MSE.

For a comprehensive analysis, we compared the average MSE between the
original depth maps and those generated by the CNN across several images.
The comparison for two image batches is summarized in the tables|[6.2 and
6.3l In the tables, Image [b, i] stands for: b is a batch number and i is an id
of the image in the batch. Batches 0 and 1 represent data already known by
the CNN, while batches 2 and 3 represent unseen data:

Image [b, i] Original MSE [m?]] CNN MSE [m?] |

[
Image [0, 0] 2.3546 1.8546
Image [0, 1] 3.1723 2.2389
Tmage [0, 2] 1.3083 1.1081
Image [1, 0] 4.8962 3.6047
Image [1, 1] 0.9752 0.5431
Image [1, 2] 2.2383 1.7133

Table 6.2: Comparison of Average MSE between Original and CNN-Generated
Depth Maps - known data.

Image [b, i Original MSE [m?] | CNN MSE [m?] |

Image [2, 0] 3.7491 2.9832
Image [2, 1] 2.5195 1.9903
Tmage (2, 2] 1.7890 1.9082
Image [3, 0] 5.8700 5.3446
Tmage [3, 1] 3.0687 2.2729
Tmage [3, 2] 3.4750 3.6031

Table 6.3: Comparison of Average MSE between Original and CNN-Generated
Depth Maps - unknown data.
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Since we are calculating the Mean Squared Error (MSE), we also filtered
out large values of the squared error to exclude outliers, as these outliers can
significantly impact the MSE. This allows us to demonstrate that our results
are not solely dependent on outliers. Tables 6.4 and 6.5/ show the MSE values
with values greater than 1 filtered out.

Image [b, i]  Original MSE - no outliers [m?], CNN MSE - no outliers [m?] |

[
Tmage [0, 0] 0.1209 0.0603
Image [0, 1] 0.2423 0.1560
Tmage [0, 2] 0.0890 0.0882
Image [1, 0] 0.0929 0.0568
Image [1, 1] 0.1291 0.0870
Image [1, 2] 0.0593 0.0820

Table 6.4: Comparison of Average MSE between Original and CNN-Generated
Depth Maps, with filtered outliers where squared error was > 1 - known data.

Image [b, ]  Original MSE - no outliers [m?]] CNN MSE - no outliers [m?] |

Image [0, 0] 0.0831 0.0801
Image [0, 1] 0.0792 0.1445
Tmage [0, 2] 0.0720 0.1526
Image [1, 0] 0.0929 0.0568
Tmage [1, 1] 0.1291 0.0870
Image [1, 2] 0.0593 0.0820

Table 6.5: Comparison of Average MSE between Original and CNN-Generated
Depth Maps, with filtered outliers where squared error was > 1 - unknown
data.

Additionally, we assessed the Mean Square Error (MSE) of the reprojections
from the output depth maps into the coordinate systems of other output
images, aiming to verify the consistency of the depth maps produced by
our CNN. This involved contrasting these MSE values against those derived
from the reprojections of the original LIDAR depth maps. The process for
calculating this specific metric is illustrated in the diagram below (Figure
6.5)).
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IMAGE 1 DEFTH CNM OUTPUT 1

IMAGE 2 DEFTH CNN OUTPUT 2

IMAGE 3 DEFTH CNN OUTPUT 3

Figure 6.5: 2nd evaluation metric of CNN. Average value from L; and Ly can
be found in columns Original MSE in tables |6.6/ and [6.7, while the average of
values L} and L} is represented in the colums CNN MSE.

Mathematically, the error can be expressed similarly as in equation [6.1]
where n denotes the total number of images in the batch, D; represents the
target depth map for reprojection (either original or generated by CNN),
and D;_,; realize eiher original or generated D; depth map transformed to
the coordinate system of camera j. It’s crucial to compare original depth
maps with other original maps and CNN-generated maps with other CNN-
generated depth maps exclusively to ensure an accurate evaluation of depth
map consistency (tables 6.6 and [6.7)).
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Image [b, 7] Original MSE [m?]] CNN MSE [m?] |

[
Tmage [0, 0] 0.5005 0.1660
Tmage [0, 1] 1.0295 0.2563
Image [0, 2] 1.4814 0.5509
Image [1, 0] 1.6313 0.0778
Image [1, 1] 3.3306 0.1352
Image [1, 2] 4.3834 0.2702

Table 6.6: Comparison of Average MSE between Original and CNN-Generated
Depth Maps - known data.

Image [b, 7] Original MSE [m?] | CNN MSE [m?] |

Image [2, 0] 0.6092 0.3980
Image [2, 1] 1.3751 1.2091
Image [2, 2] 1.8150 1.6755
Image [3, 0] 2.4363 0.5103
Tmage [3, 1] 6.0960 1.3986
Image [3, 2] 8.1981 2.0490

Table 6.7: Comparison of Average MSE between Original and CNN-Generated
Depth Maps - unknown data.

As with the previous metric, tables 6.8 and [6.9] present the MSE values
with filtered outlier values.

Image [b, i]  Original MSE - no outliers [m?]] CNN MSE - no outliers [m?] |
Image [0, 0] 0.1594 0.0374
Image [0, 1] 0.3234 0.0676
Image [0, 2] 0.4485 0.1202
Tmage [1, 0] 0.1053 0.0322
Tmage [1, 1] 0.1949 0.0636
Tmage [, 2] 0.2528 0.1221

Table 6.8: Comparison of Average MSE between Original and CNN-Generated
Depth Maps, with filtered outliers where squared error was > 1 - known data.

Image [b, i Original MSE - no outliers [m?]] CNN MSE - no outliers [m?] |

Image [0, 0] 0.1482 0.0901
Tmage [0, 1] 0.2083 0.2165
Image [0, 2] 0.4355 0.3083
Image [1, 0] 0.1061 0.1056
Image [1, 1] 0.2378 0.2425
Image [1, 2] 0.2829 0.2583

Table 6.9: Comparison of Average MSE between Original and CNN-Generated
Depth Maps, with filtered outliers where squared error was > 1 - unknown
data.

These results demonstrate that our CNN significantly improved the consis-
tency of depth maps. On both known and unknown data with outliers, we
enhanced most depth maps. Although we conducted this experiment with
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only a few examples, the outcomes indicate promising potential for future
research.

Another metric used was the mean absolute error (MAE). This metric
quantifies the average absolute difference between the depth values predicted
by our CNN and those obtained from our inputs. We conducted comparisons
against depth maps acquired through two methods: LiDAR (referred to as
MAE LiDAR) and Multi-View Stereo (MVS), to estimate the accuracy of
our generated depth maps. Tables [6.10/ and [6.11] detail the MAE results from
these comparisons across four batches of images.

Image [b, ] MAE LiDAR [m] ] MAE MVS [m] |
Image [0, 0] 0.3762 1.0977
Image [0, 1] 0.3035 1.0453
Image [0, 2] 0.2312 0.8449
Image [1, 0] 0.5282 0.6032
Image [1, 1] 0.5101 0.4995
Tmage [1, 2] 0.4470 0.5856

Table 6.10: Mean Absolute Error (MAE) between output and LiDAR/MVS
across Two Batches - unknown data.

Image [b, ] MAE LiDAR [m]] MAE MVS [m] |

Tmage [2, 0] 1.3506 3.1582
Image [2, 1] 1.4839 3.2012
Image [2, 2] 1.2330 3.0215
Image [3, 0] 0.6598 1.5514
Image [3, 1] 0.8317 2.4786
Image [3, 2] 0.7242 2.2083

Table 6.11: Mean Absolute Error (MAE) between output and LiDAR/MVS
across Two Batches - unknown data.

The table above shows us, the MAE between the outputs and the inputs. It
was expected that the MAE of data that were not previously seen by the CNN
would be higher, however we believe that if we trained on bigger dataset, the
MAE values would also decrease. Also these MAE values could be decreased,
if we increased the value of v in the loss function (5.5). When we compare
the input and output of known data, we can observe that the MAE error
between output and LiDAR value is always smaller than the difference of
depth estimated by MVS and Lidar (0.633 meters) mentioned in section 4.4.1.

Lasty we used Structural Similarity Index (SSIM) to evaluate similarity
of our depth maps. After testing numerical precision, we also evaluated the
perceptual quality of our generated depth maps using SSIM. This metric
considers changes in structural information, brightness, and contrast, offering
insights into how closely the predicted depth maps resemble the actual depth
maps in terms of visual structures (previously mentioned in section 4.4.1)).
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The SSIM scores for our depth maps, compared to their ground-truth
counterparts across the four batches, are summarized in tables [6.12| and 6.13;

Image [b, i] SSIM 1

[
Image [0, 0] 0.7376
Image [0, 1]  0.8057
Image [0, 2] 0.8215
Image [1, 0] 0.6396
Image [1, 1]  0.6679
Image [1, 2] 0.6987
Table 6.12: Structural Similarity Index (SSIM) across Two Batches - known data.
Image [b, i)  SSIM 1
Image [2, 0] 0.4514
Image [2, 1] 0.4187
Image [2, 2] 0.4257
Image [3, 0]  0.6058
Image [3, 1]  0.5558
Image [3, 2] 0.5735

Table 6.13: Structural Similarity Index (SSIM) across Two Batches - unknown
data.

The last two tables show us, that the network produces images with lower
SSIM if the data was not previuosly seen by the network. This issue could
again be solved by leveraging the weight v of the reprojections to the original
depth maps described in [5.5.
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Chapter 7

Conclusion

The work on the thesis was challenging because of no existing ground truth
measurements, a limited amount of data captured in the scope of the EU
H2020 Artwin project on Eiffage construction, restriction of the utilized
device for capturing the RGB-D images, and given hardware for evaluation
and training of proposed methods. We observed that depth data from
iPad are more consistent indoors while outdoors images are more consistent
from Multiview Stereo (MVS). Moreover, one can see repeating errors, e.g.,
inaccurate smooth depth values on edges leading to flying points (iPad) or
missing poles or texture-less walls (MVS). Therefore, we focused on training
an unsupervised method that will merge depth measurements from several
sources and make them more consistent across multiple views. As the Ground
Truth depth maps are usually not available for specific setups, i.e., device
and environment, we employed consistency as our metric and formulated our
loss function accordingly.

. A Interpretation of Results

As demonstrated in the results section [6, the pixel-wise and convolutional
approaches to enhance depth maps using neural networks show promising
outcomes. The quantitative analysis indicates that our model improves the
consistency of depth maps compared to initial less consistent inputs.

The convolution approach, in particular, has proven effective in handling
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both known and unknown inputs. As expected the performance is better on
previously seen depth maps. However, even though the data generated by
our approaches do have lower Structural Similarity (SSIM), lower resolution
because of the subsampling, and are trained only on a few samples, we gener-
ated depth maps with higher consistency on unseen inputs. The consistency,
i.e., the inverse of the distance between the original reprojected depth maps
between input RGB-D images is smaller than in the case of updated depth
maps. This error reduction underlines the capability of convolutional neural
networks to refine spatial estimations derived from multiple perspectives lead-
ing to more accurate 3D reconstruction. Users can benefit from an additional
step in between meshing and depth map fusion that will make the depth
maps more consistent and filter common repetitive distortions of individual
depth measurements.

All in all, the pixel-wise approach has proven to be effective, however, it
does not satisfy our expectations as much as does the convolutional approach.
We believe there is a space for refining it to achieve better results, for example,
using patches of input RGB-D images instead of individual pixels. The con-
textual information plays an important role and therefore, the convolutional
neural network leads to better results. Our approaches show that work in this
field of study does have the potential for future research. The thesis proposes
a novel and innovative view on refining the depth maps before merging them
into a single 3D reconstruction.

. 7.2 Future Work

During the work on this thesis, we found multiple enhancements that could
be done to improve the consistency of depth maps.

Firstly, the loss function from figure |5.2.2 could be improved by not com-
paring the CNN output with the original depth values, but using the updated
depth values to reproject RGB images. Therefore, we eliminate the depen-
dence on input depth maps and can employ new loss metrics like Structural
Similarity (SSIM). We assume that would allow the loss function to converge
to zero error which is not possible now in case of noisy inputs.

Another enhancement would be to use a transformer architecture [55] [57]
instead of the NN architecture we proposed in both our approaches. Using
this specific kind of NN architecture would allow for superior handling of
complex spatial relationships and dependencies within the image data. Trans-
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formers, with their self-attention mechanisms, are adept at processing data
globally and can capture nuances across entire images rather than just within
localized patches. This capability would potentially improve the accuracy and
detail of depth map predictions, particularly in challenging scenarios where
traditional methods struggle with context integration and depth continuity
across varied terrains and object interactions. Furthermore, the flexibility
of transformers in learning from diverse data representations could facili-
tate more robust generalizations to new environments or different types of
depth-sensing inputs, enhancing the model’s utility across a broader range of
applications. However, transformers also bring disadvantages, primarily their
high demand for computational resources. They require substantial training
data to perform optimally. Additionally, they increase the risk of overfitting,
especially with limited datasets.

The third interesting idea arose when discussing the equations 4.12| and
4.13] Let’s present the equations one more time for clarity:

In our thesis we are optimizing d and d’, however, it would be interesting
to optimize also the calibration matrices K and our camera extrinsic E.
Optimizing all these values together would be impossible because the problem
is unconstrained, i.e., we have more parameters than measurements. However,
it would be possible to converge to reasonable values by iteratively switching
the values that are to be optimized. Therefore we could first optimize d,
based on that refinement we would optimize E and K, and then we would
optimize d again. The benefit is that we could also finetune the camera poses
and camera intrinsic leading to effective self-calibration and close to zero
reprojection errors.
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Chapter 8

Code Directory, Usage Guide and Used
Softwares

This chapter gathers all our developed scripts, offering a clear overview and
guidance on their application. It’s designed as a concise reference to help users
navigate through our codebase, highlighting the purpose and functionality of
each script for straightforward implementation in various projects.

All the scripts, links to datasets, pretrained models and more details can
be found at: https://github.com/ferbrjan/Depth_consistency]

. 8.1 Used Softwares and Libraries

Most of the development work was executed using MATLAB and Python.
MATLAB played a main role in generating datasets for both convolutional
and pixel-wise approaches, while Python was instrumental in the design,
training, and testing of neural networks.

B 8.1.1 Python Libraries

Below is a list of Python libraries that were utilized:
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Library Purpose
torch Neural network construction, training, and testing
torch.nn Building neural network layers

torch.nn.functional
torch.optim

scipy
matplotlib.pyplot
numpy
numpy.matlib
math

mat73

0s

argparse

Providing functional interface for neural network operations
Optimization algorithms

Loading .mat files

Plotting and visualization

Numerical operations

Matrix functions in numerical operations

Mathematical functions

Loading MATLAB 7.3 and above version files

Operating system interfaces, managing file paths
Command-line option and argument parsing

Table 8.1: Summary of Python libraries used in the project.

. 8.2 Dataset Creation

For the dataset creation scripts to function correctly, your working directory
should be organized as follows:
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datasetl
images.txt
points3D.txt
cameras.txt

images
00000. jpg
00001. jpg

depth_mvs
00000 .mat
00001 .mat

depth_ios
00000 .mat
00001 .mat

Matlab
a2h.m

colmap_conversion_unit_test.m

generate_data.m
generate_data_exp2_V2.m

Your work folder, containing the scripts (generate_data.m, generate_data_exp2_V2.m,

...), must include two essential directories: the Matlab folder, which houses all
the functions utilized by the main scripts (available on our GitHub repository),
and the dataset folder. The dataset folder should encompass the .txt files
generated by COLMAP, a directory with all images (preferably numbered
from 0 to n), a directory with corresponding depth maps from LiDAR, (named
identically to the RGB images), and a directory with depth maps from MVS
(also named identically to the RGB images).

B 8.2.1 Pixel-Wise

To initiate the dataset creation process for a pixel-wise approach, begin by
opening the generate_data.m script.

You must define the dataset name on line 4 of the script. Additionally,
between lines 19 to 23, it’s crucial to set the following variables:
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Variable Value
Number of images to reproject (n) 8

Number of intersection points (k) 100
Reference image name (ref image name) '00145.jpg"
Threshold for no outliers (no_ outlier_thresh) 0.05
Threshold for outliers (outlier thresh) 0.2

Table 8.2: Summary of Variables.

After executing generate_ data.m, it will produce a file named ref image name.mat.
The next step is to generate training rays by running generate_ training rays.m
and inputting the name of ref _image name.mat on the first line. Remember
to modify the name of the output file on line 77. This step creates the training
data necessary for our pixel-wise neural network.

For testing data generation, utilize generate_data.m again to create a
new reference image, distinct from the training image. Then, execute gener-
ate_test_img.m, ensuring to specify the name of the newly generated .mat
file on line 3. This process completes the preparation of testing data.

B 8.2.2 Convolutional

Data generation for the convolutional approach is somewhat more straight-
forward compared to the pixel-wise method.

To proceed, you only need to execute the generate data_exp2_ V2.m
script. It is essential, as before, to define the dataset name on line 4. Between
lines 19 to 23, specify the variables as detailed in 8.2, By default, the value
for n is set to 2 to mitigate memory constraints encountered when using
GPUs. If your GPU has a higher capacity, you may cautiously increase n.

Executing this script will yield both the training and testing data required
for the convolutional model. It’s necessary to run the script multiple times
to generate multiple sets of data.
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. 8.3 Neural Networks

B 8.3.1 Pixel-Wise

B Training

To run the pixel-wise NN training, load all the necessary data for training
(xxx_ready.mat files) and run the pixel wise.py script. The loading process
is not yet optimized as command line argument and therefore it is necesarry
to manually input all the files on lines 10-42.

B Pretrained Models

Our code repository also includes a pretrained model used during the devel-
opment of the neural network. The name of the pretrained model foo pixel
wise approach is pixel wise pretrained.pth and should be loaded for testing.

B Testing

To test the neural network just run test.py while specifying the test file on
line 29 and path to the pretrained model on line 25. The output should be a
.npy file with the resulting means and stds.

B Result Analysis

To obtain all the results presented in the |§| section (SSIMs, MSEs, Reprojetion
errors...) just simply run analyze_ pixelwise.py while specifying the correct
path to the generated npy data on line 6.
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B 8.3.2 Convolutional
B Training

For CNN training, the script exp2_ GPU__downsample_edited_ with__output_ reprojections.py
must be executed. Use the command "python exp2 GP_ downsample_edited with output_ reprc
data_ path k_ path output_ path" to run the script, where data_ path specifies

the location of data created by generate data_exp2_V2.m, k_path is the

location of the camera calibration matrix K, and output_ path is where the

trained model will be stored.

Moreover, the data used for training need to be organized as follows:

data
Camera_extrinsics
xxx_RGBD.mat

Image_data
XXX_cam_params.mat

The Camera extrinsics and Image data folders can contain multiple corre-
sponding files, if the multi batch training is desired.

B Pretrained Models

Our code repository also includes multiple pretrained models used during the
development of the neural network. Some of the models are trained on single
batch, some are trained on multiple batches. The following overview specifies
the specifications of each pretrained model that can be used:

B convolutional multi_frame.pth - Model trained on multiple batches.
Used to evaluate unseen data
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® convolutional single frame_ 120.pth - Model trained on single baztch
of image with id 120

® convolutional multi_frame_040.pth - Model trained on single baztch of
image with id 40

B Testing

To evaluate the network, execute test2_ edited.py. Initiate the script with the
command "python test2_ edited.py data_ path model_path", where data_ path
indicates the location of the test data and model path points to the location
of the pretrained .pth model file. The script will output n .npy files, each
containing a depth map produced by the CNN.

B Result analysis

To obtain all the results presented in the 6 section (SSIMs, MSEs, Reprojetion
errors...) just simply run analyze_results.py while specifying the correct path
to the generated data on lines:

B line 101 - path to Lidar depths
® line 116 - 118 - path to generated CNN depth maps

| line 129 - calibration matrix

The script should then return all the necesarry values used as evaluation
metrics.
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. 8.4 Al Softwares Used

Some parts of the thesis were rephrased using ChatGPT [39], and then edited
again. Also ChatGPT was used to help us generate code templates and for
language translation related problems. We did not use ChatGPT for research
purposes and no text from our thesis was solely generated by any Al tool.

Another AT software used, was COPILOT [I7] by Pycharm. This software
proposes next steps while coding in python. Even though it was not used
all the time because of its reliability, some of the code propositions were
employed, as they were correctly estimated.
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